Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biosensors (Basel) ; 12(12)2022 Nov 27.
Article in English | MEDLINE | ID: covidwho-2123521

ABSTRACT

Rapid antigen tests (RATs) are widely used worldwide to detect SARS-CoV-2 since they are an easy-to-use kit and offer rapid results. The RAT detects the presence of the nucleocapsid protein, which is located inside the virus. However, the sensitivity of the different RATs varies between commercially available kits. The test result might change due to various factors, such as the variant type, infection date, swab's surface, the manner in which one performs the testing and the mucus components. Here, we compare the detection limit of seven commercially available RATs by introducing them to known SARS-CoV-2 nucleocapsid protein amounts from the Omicron variant. It allows us to determine the detection limit, disregarding the influences of other factors. A lower detection limit of the RAT is necessary since earlier detection will help reduce the spread of the virus and allow faster treatment, which might be crucial for the population at risk.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Limit of Detection , COVID-19/diagnosis , Nucleocapsid , Nucleocapsid Proteins
2.
Mater Today Bio ; 14: 100265, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1796292

ABSTRACT

The SARS-CoV-2 virus emerged at the end of 2019 and rapidly developed several mutated variants, specifically the Delta and Omicron, which demonstrate higher transmissibility and escalating infection cases worldwide. The dominant transmission pathway of this virus is via human-to-human contact and aerosols which once inhaled interact with the mucosal tissue, but another possible route is through contact with surfaces contaminated with SARS-CoV-2, often exhibiting long-term survival. Here we compare the adsorption capacities of the S1 and S2 subunits of the spike (S) protein from the original variant to that of the S1 subunit from the Delta and Omicron variants on self-assembled monolayers by Quartz Crystal â€‹Microbalance. The results clearly show a significant difference in adsorption capacity between the different variants, as well as between the S1 and S2 subunits. Overall, our study demonstrates that while the Omicron variant is able to adsorb much more successfully than the Delta, both variants show enhanced adsorption capacity than that of the original strain. We also examined the influence of pH conditions on the adsorption ability of the S1 subunit and found that adsorption was strongest at pH 7.4, which is the physiological pH. The main conclusion of this study is that there is a strong correlation between the adsorption capacity and the transmissibility of the various SARS-CoV-2 variants.

SELECTION OF CITATIONS
SEARCH DETAIL